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Today’s Objectives

* Visual Odometry
— Camera model
— Calibration

e Feature detection

— Harris corners
— SIFT/SUREF etc.

* Optical Flow
— Kanade-Lucas-Tomasi Tracker



Vision

Use both eyes...at arm’ s length, center target within finger OK sign Lock hand in
position...see which eye is still aligned by closing the other. The eye with good
alignment is your dominant eye!



Human Vision

* Larger portion of our brain is used for vision

e Retina:1000mm? 120mills Rods, 7mills Cones
* Human Eye Resolution= 500 Megapixel

e Dataratex~ 3 GB/sec

“  From Front of the Eye to Back of the Brain

Ciliary body
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Computer Vision (Perception) is hard!

* Perception is hard because
— A lot of data
— Uncertainty

— Model estimation

— Contextual
information
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Image Processing Vs. Computer Vision

* |Image processing we deals with the images
and the outputs are also images
— It deals with giving effects various effects to the
Image
 Computer vision also deals with images but
the outputs are data.

— It deals with extraction of meaningful information
from images



Computer Vision

Automatic extraction of meaningful information
from images and videos

L ek Sl

window

Semantic Information Geometric Information
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Challenges In Computer Vision

* Viewpoint changes
* [[lumination changes
e Object intra-class variations

* Inherent ambiguities

(=3 - i

Inherent ambiguities Object intra-class variations Illumination changes
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Applications

Robot navigation and automotive
Medical imaging

3D reconstruction and modeling
Video games and tele-operations
Augmented reality

Motion capture

Recognition



Visual Odometry

Camera Model
Calibration
Feature Extraction
Feature Tracking

Camera Pose
Estimation

Triangulation

Raw Data(Vision/Ranges)
Clustering(Corners/Lines)
Objects (Doors/Rooms)

Semantics(Contextual
Information, Place
recogniation)



Image Formation

* |f we place a piece of film in front of an object,
do we get a reasonable image?

object Photoreceptive surface

object barrier film
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Why Use a Lens?

* |deal pinhole: less amount of light, diffraction
Bigger pinhole: blurry image

* Lens focuses light onto the film
Rays passing through optical center are inert

* All rays parallel to the optical axis converge at the

focal point

; Lens
object Focal Plane

[ Focal Point

Focal Length: f
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Pinhole camera model
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Perspective camera

* For convenience, the image plane is usually
represented in front of C such that the image

preserves the same

Z_= optical axis

orientation (i.e. not flipped) e

* A camera does
not measure
distances o = principal point”
but angles!

Image plane (CCD)



Perspective Projection

* The Camera point P. = (X, 0, Z,) projects to
p = (x,y) onto the image plane

* From similar triangles P = (Xe.0.7¢ )T
cC— CrV,aC

: [Xf
X — X c :> X = }9{ ¢ 7 p )
f Z c ZC ‘ C/ X JL{,

<> 0

* Similarly, in the general case: /" | image Piane
fZo T Z



Scene Points into Pixels

* To convert p, from the local image plane coordinates (x, y) to the pixel
coordinates (u, v), we need to account for optical center O = (10, v0) and
scale factor k for the pixel-size

— X
u= Uy + kx = u[}+k2—;
— fY
V=7 + kyi’ U0+kz—;
* Use Homogeneous Coordinates for linear mapping from 3D to 2D, by
introducing an extra element (scale): (0.0) ; Image plane
[ 77 | | vl
A ] O G L
P= | p=|v |=AvV S i Z Y
V) ||
' W | 1
. L :'_,\r p
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Camera Model in Homogenous Form

fXc
Zc

U= uUg+ kx= uytk

v=vyt+ky= v0+kf;—;

J
Expressed in matrix form and homogeneous coordinates /C
Y.

Au K 0 uy| X, X,
Al=0 & v, | Y |=K| T,
_i_ _0 0 1__Zf_ _Zf_
- - _ - - L B _ _X ?_
X, n My s | X, h YH
| Y, (= T || L, [F L] = R T\ Zw
- =1 a | 'H:'
Z. | I o sl 4] 5] I
S - 11
[#] ‘I ’ 71 7z 7171 71 (X | ~=-
r 11 12 13 14l .. | 00 WY, TUt--—amacae=-="
| . _ - W Y,
AN _‘&[R‘T]' = | 771, My 1, 771, "
7 21 22 23 24 ||
W ) _ _ w . .
' | My My miy g | Extrinsic

- Parameters
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EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Perspective Effects

e What is lost?

Perpendicular?

* Whatis
preserved?
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EE565: Mobile Robotics

* The standard model of
radial distortion is a
transformation from the
ideal coordinates (u, v)
(i.e., undistorted) to the
real observable
coordinates (distorted)
(ud, vd)

e The amount of distortion
of the coordinates of the

observed image is a

radial distance.

”d _ {l—|—_f(1}*2} IF—HG n HD
L L oy Vi

2 2
roo= {u—uD] t(v—1p)
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Lens Distortion

Elolananaala
IIIITERLL

nonlinear function of their ™ &

No distortion
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Barrel distortion

Module 3: Inertial and Visual Odometry

Pincushion
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EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Camera Calibration

* Goal: to determine the intrinsic parameters of the camera model

* The standard method consists of measuring the 3D positions of n control
points on a calibration object and the 2D coordinates of their image
projections

— n 26 non-coplanar control points on a three-dimensional calibration target
— n 24 non-collinear control points on a planar pattern

Extrinsic paramelers (Camera-c I‘I'Il!.il‘lﬂ
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Image Filtering

* Averaging Filter

> I(r.c)
J(x.v)= (r0)=Sy
(2M +1)(2N +1)
Gaussian Filter
1 =)’
G(x) = e 207
() o277
=0
o : controls the amount of smoothing ‘ L I g A ‘
* Basic Filtering Operations "~
— Convolution J(x) = F*1(x)= ZF(;*)I(J:—;:)
I=—?‘~f
— Correlation J(x)=FoI(x)= ZF(F)I(I—I—F)
i=—N
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Edge Detection

* Edge contours
in the image
correspond to (AR F ¥y
important scene (i 8 8 £ F I}
contours. R F i

e Ultimate goal of

bmiB kaert, Wikimedia Commaons

edge detection: an |deaI|zed I|ne drawmg
* Edges correspond to sharp changes of intensity
* Change is measured by 1st order derivative in 1D

e Or 2nd order derivative is zero. |

Of O o t S
V= [8£7 8;];] 0 =tan~1 (30/90) IV11 = /(3D + (3D
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1D Edge Detection

* |mage intensity shows an obvious change
e Where is an edge?

1(x)

i i i i
0 200 400 G600 800 1000 1200 1400 1600 1800 2000
X

;%;jjr(;r) 0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
X



Solution: Smoothing

Kernel

Differentiation

Sigma = 50
_f_% I(x)
w
G_(x)
) e U S R el S S S _
1200 1400 1600 1800 2000
= I ! T r ]
N=] T
E S SR R A | s(x)=1(x)*G,(x)
> .
s 00 SRS SNS SUOSS  — |
1200 1400 1600 1800 2000
T T T T T I T T T
E : A
r
| s'(x) = —(s(x))
| cx
O~ I I I I IR L I  — [ 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Edges occur at maxima/minima of s'(x)

Drawback: Increased computation. Can we do something better?
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Derivative Theorem of Convolution

.S(A)——(Cr (x)* I(x)) =G (x) = I(x)

Sigma = 50

This saves us one operation:

I (x)

Signal

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kermel

G () == G ()

1 1 1 1 1 I 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

_ : : ! ! :
o : B : : I . ¥

r r = . i ;

s'(x) = G (x) * I(x) 3 : Edges occur at maxima/minima of s (x)
S : : : :
o : : 5 5 : 5 : 5 :
Ofp-—----- | | 1 [ I ------- | | 1 I“-__---_
0 200 400 600 800 1000 1200 1400 1600 1800 2000

How to find edge rather than a maxima or minima?
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Zero Crossing

* Locations of Maxima/minima in $(x) are

equivalent to §(x)

I(x)

¥

G () == G, ()

s"(x) =G (x)*1(x)

Convolution

09.03.2015

Sigma = 50

. . ! ; ; ; ; ; ;
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2D Edge Detection

* Find gradient of smoothed Usually use a separable filter such that:
image in both directions Lo — (o et)
oG x1)] [eG, ., \}
~ G.L(x)G_(v)=1
VS =V(G_*I)=| - ?‘-TH =| X —| (_T) o ()
(G, *1) oG, , ; G ()G () * 1
oy oV

e Discard pixels with |I75|(i.e. ed_ge ;trength)_, below a certain below
* Non-maximal suppression: identify local maxima of |VVS| detected
edges

_ Non-maximal suppression
I Original image ("Lenna’) |"F.5‘| : Edge strength Threshnldlng|?5'|

= edge image
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EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Point Features: Combining Images

* Detect corresponding points across images in order to align them

— Detect the same points independently in different images (Repeatable
detector)

— ldentify the correct correspondence of each point (Reliable and
Unique descriptor)

* Point features used in robot navigation, object/place recognition,
3D reconstruction
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Harris corner detection

[Harris and Stephens, Alvey Vision Conference 1988]

* How do we identify corners?

 Key: around a corner, the
image gradient has two or
more dominant directions

e Shifting a window in any direction should give a
large change in intensity in at least 2 directions

“flat” region: “edge”: “corner”:
no change in all no change along the significant change in
directions edge direction all directions



Implementation

 Two image patches of size P one centered at
(x,y) and one centered at (x + Ax,y + Ay) the
similarity measures between them is defined by

sum squared error 1
SSD(Ax,Ay) = Z (I(x,V)—I(x+Ax,yv+AV))
x.velP

_ 9I(xy) 0I(x.y)
Let [, = ™ 3y

I(x+Ax, y+AV) = I(x, )+ 1 (x,V)Ax+ 1 (x, V)AY

. Approximating I (x + Ax,y + Ay)

and Iy =

which results into

g Al‘
SSD(Ax, Av) = 3" (1, (3. »)Ax + 1, (x. A ) = [Ax Ay]M[AJ



Implementation (Cont.)

Since M is symmetric with :
Eigen values 1; and A4, M =Z

The Harris detector analyses - 0
. . . — "1

A and A, to decide if we arein M =R"7| 2 JR

presence of a corner or not

: y y Ax
M is the “second moment matrix [Ax Av]M[ J

II
I

Direction of

Direction of

Visualize M as an ellipse fastest change recton
with axis-lengths determined ' e
by A, and A, and orientatio

determined by R



Corner Response Function

M

* Does the patch describe *
a corner or not?

— No structure: .;1=41,=0

— 1D structure: A;> A,
— 2D structure: Large 44, 4, /
* Last step of Harris corner |ft Cdge: .

A=A =0 A == A,

detector: extract local miiiiiia or wic
cornerness function (Computation of
A1, A, is expensive) where k = [0.04 — 0.15]

C = MAy—K(hy +1hy)? = det(M)—x - trace’(M)



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Harris Corner Detector: Workflow
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EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Workflow: Compute Corner Response R
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Workflow:Find points with large
corner response: R> threshold




Workflow: Take only the points of local
maxima of R




EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Detected Points
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Properties of Harris Corner Detector

* Harris detector: probably the most widely

used & known corner detect: . .
* The detection is invariant to "‘

— Rotation @ %

— Linear intensity changes

e The detection is NOT invariant to

_ T =
Scale changes / II~

|
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Scale Invariant Detection

* Consider regions (e.g. circles) of different sizes
around a point

* Regions of corresponding sizes will look the
same in both images




Scale Invariant Detection

* The problem: how do we choose

corresponding circles independentlyin each
image?

* Intensity average
of region

Image 2

Image 1

\ scale =1/2

"'\-\.__\_

-
>

region size

UIJ.Ud.£VUl1O Ul. AlITTIdU Ndlilidl INdSITT <4V

L

v be e
(]

* region size



Scale Invariant Detection

* Design a function on the region (circle), which is
“scale invariant” (the same for corresponding
regions, even if they are at different scales)

[ — ! I e Good!
‘ / bad /. ™~ = Y .\ / m |

b

region size region size region size
Kernels:

DoG =G(x, v, ko)—G(x, y,0)

(Difference of Gaussians)

where Gaussian
0.2
2 2
—_ -‘ll +.1 ]
- : N 1 252
(-T(.'l'-‘,)"'.‘g_) - '\/EG e 04

-5 -4 -3 -F -1 i 1 b x 4 5
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SIFT Features

[Lowe, IJCV 2004]

e SIFT: Scale Invariant Feature Transform

* SIFT features are reasonably invariant to changes
in: rotation, scaling, small changes in viewpoint,
illumination

* Very powerful in capturing + describing
distinctive structure, but also computationally
demanding

* Main SIFT stages:
— Extract keypoints + scale

— Assign keypoint orientation
— Generate keypoint descriptor
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EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

SIFT

* Response of LoG for corresponding regions

. >
9.8 Scale 24 Scale

09.03.2015 Dr. Ahmad Kamal Nasir 43



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Extract keypoints + scale

Blur

W

* Keypoint detection

— Scale-space pyramid:
subsample and blur
original image

— Difference of Gaussians
(DoG) pyramid: subtract
successive smoothed image

Subsample

— Keypoints: local extrema in
the DoG pyramid

—DoG — X
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SIFT orientation and descriptor

* Keypoint orientation (to achieve rotation invariance) T
— Sample intensities around the keypoint o ;

— Compute a histogram of orientations of intensity gradients
— Keypoint orientation = histogram peak

Eghsae i

Image gradients

* Keypoint descriptor

— SIFT descriptor: 128-long vector

— Describe all gradient orientations relative to the Keypoint Orientat

— Divide keypoint neighborhood in 4x4 regions & compute orientatio

histograms along 8 directions

— SIFT descriptor: concatenation of all 4x4x8 (=128) values

Keypoint descriptor
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Optical Flow

* Optical flow is an approximation of the
apparent motion of objects within an
image.

e Algorithms used to calculate optical flow
attempt to find correlations between near
frames in a video, generating a vector field
showing where each pixel or region in the

original image moved to in the second image.

* Typically the motion is represented as vectors originating or terminating at

pixels in a digital image sequence.

e Estimating the optical flow is useful in
pattern recognition, computer vision, and
other image processing applications

* |t computes the motion vectors of all pixels
in the image (or a subset of them to be
faster)

09.03.2015 Dr. Ahmad Kamal Nasir
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Apparent Motion

* Apparent motion of objects on the image
plane

e Caution required!!

— Consider a perfectly uniform sphere that is
rotating but no change in the light direction

* Optic flow is zero

— Perfectly uniform sphere that is stationary
but the light is changing

* Optic flow exists

e Aperture problem

N I

(NN I N I
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Optic Flow Computation

* Two strategies for computing motion
— Differential Methods

» Spatio temporal derivatives for estimation of flow at
every position

* Multi-scale analysis required if motion not constrained
within a small range

— Dense flow measurements
— Matching Methods

* Feature extraction(Image edges, corners)

* Feature/Block Matching and error minimization
— Sparse flow measurements



Optic Flow Computation (Cont.)

* Image Brightness Constancy assumption
* Let| be the image intensity as captured by the camera

e Using Taylor series to expand |

](x+Ax,y+Ay,t+At):I(x,y, )+gAx+gAy+gAt
Ox oy ot

I I(x+Ax, y+Ap,t+ At)—I(x, y,t ) [, Ol Ax Ol Ay ol
A0 At A—0 Ox At 8y At 8t

* Apparent brightness of moving objects remains constant
ol dx ol dy ol dI
ox dt 8y dt 8t dt

=0



Optic Flow Computation (Cont.)

* I[mage Brightness Constancy assumption

* Apparent brightness of moving objects remains
constant

ol dx ol dy ol
Ax dt 8)/ dt 6t

=0

« The (oI/ox,0I/dy)=VI are the image gradient
while the (dx/dt,dv/dt)=v are the components of
the motion field

(VI) v+1,=0




Optic Flow Constraint

* How to get more equations for a pixel?

* Basicidea: impose additional constraints

* Most common is to assume that the flow field is smooth locally
 One method: pretend the pixel’s neighbors have the same (u,v)
* |f we use a 5x5 window, that gives us 25 equations per pixel!

Vi(p)u v]+1,(p,)=0
Ix(pl) [y(pl)_ _]t(pl)_

lx(:pz) ly(:pz) H ]t(Pz)

Low) L) 1)

A25x2d ox1 — b25><1



Lucas-Kanade Optic Flow

 We now have more equations than unknowns

A25><2d2><1 — b25><1 — ImnHAd _bH
* Solve the least squares problem
 Minimum least squares solution (in d) is given by

(ATA)zxz dyg = (AT )2><25 b25><1
DAY ISIMEEbYSIS
200 2L, M X
e First proposed by Lucas-Kanade in 1981

 Summation performed over all the pixels in the
window




Lucas-Kanade Optic Flow

* Lucas-Kanade Optic flow

DAY MERbYSA
DSADYIS DY A
 When is the Lucas-Kanade equations solvable

* A’A should be invertible
* A’A should not be too small (effects of noise)

* Eigenvalues of A’A, A, and A, should not be small
* A’A should be well conditioned

* A/\, should not be large (A, = larger eigenvalue)



Improving the Lucas-Kanade method

* When our assumptions are violated
— Brightness constancy is not satisfied
— The motion is not small
— A point does not move like its neighbors

* |terative Lucas-Kanade Algorithm

— Estimate velocity at each pixel by solving Lucas-
Kanade equations

— Warp H towards | using the estimated flow field
* use image warping techniques
— Repeat until convergence



N
TR
1

ro Y
! \
1
'
I

._. run iterative L-K —-

Iterative Lucas-Kanade method

1
1
I
! \
1
1
1

1

1

1

1

1 \

1

1 \

warp & upsample,

v

Gaussian pyramid of image I
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Gaussian pyramid of image H
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Summary

* Visual Odometry
— Camera model
— Calibration

e Feature detection

— Harris corners
— SIFT/SUREF etc.

* Optical Flow
— Kanade-Lucas-Tomasi Tracker



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry

Questions
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